Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Int Immunopharmacol ; 133: 112132, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38691918

OBJECTIVE: This study employed Mendelian Randomization (MR) to investigate the causal relationship between genetic susceptibility to vitiligo and the risk of various autoimmune diseases, along with the mediating role of blood metabolites. METHODS: We performed two-sample MR analyses using aggregated genome-wide association studies (GWAS) data on 486 blood metabolites, vitiligo, and nine autoimmune diseases to investigate blood metabolites' causal effects on the susceptibility of vitiligo and the associations of vitiligo with nine autoimmune comorbidities. We also applied multivariable MR to unravel metabolites by which vitiligo influences the pathogenesis of autoimmune diseases. RESULTS: Our findings indicate that vitiligo amplified the risk of several autoimmune diseases, including rheumatoid arthritis (OR 1.17; 95 % CI 1.08-1.27), psoriasis (OR 1.10; 95 % CI 1.04-1.17), type 1 diabetes (OR 1.41; 95 % CI 1.23-1.63), pernicious anemia (OR 1.23; 95 % CI 1.12-1.36), autoimmune hypothyroidism (OR 1.19; 95 % CI 1.11-1.26), alopecia areata (OR 1.22; 95 % CI 1.10-1.35), and autoimmune Addison's disease (OR 1.22; 95 % CI 1.12-1.33). Additionally, our analysis identified correlations with vitiligo for 14 known (nine risk, five protective) and seven uncharacterized serum metabolites. After adjusting for genetically predicted levels of histidine and pyruvate, the associations between vitiligo and these diseases were attenuated. CONCLUSIONS: We substantiated vitiligo's influence on susceptibility to seven autoimmune diseases and conducted a thorough investigation of serum metabolites correlated with vitiligo. Histidine and pyruvate are potential mediators of vitiligo associated with autoimmune diseases.By combining metabolomics with genomics, we provide new perspectives on the etiology of vitiligo and its immune comorbidities.

3.
Environ Res ; 246: 118200, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38220077

Organic polymers hold great potential in photocatalysis considering their low cost, structural tailorability, and well-controlled degree of conjugation for efficient electron transfer. Among the polymers, Schiff base networks (SNWs) with high nitrogen content have been noticed. Herein, a series of SNWs is synthesized based on the melamine units and dialdehydes with different bonding sites. The chemical and structural variation caused by steric hindrance as well as the related photoelectric properties of the SNW samples are investigated, along with the application exploration on photocatalytic degradation and energy production. The results demonstrate that only SNW-o based on o-phthalaldehyde responds to visible light, which extends to over 550 nm. SNW-o shows the highest tetracycline degradation rate of 0.02516 min-1, under 60-min visible light irradiation. Moreover, the H2O2 production of SNW-o is 2.14 times higher than that of g-C3N4. The enhanced photocatalytic activity could be ascribed to the enlarged visible light adsorption and intramolecular electron transfer. This study indicates the possibility to regulate the optical and electrical properties of organic photocatalysts on a molecular level, providing an effective strategy for rational supramolecular engineering to the applications of organic materials in photocatalysis.


Hydrogen Peroxide , Schiff Bases , Light , Anti-Bacterial Agents , Polymers
4.
Chemosphere ; 350: 140998, 2024 Feb.
Article En | MEDLINE | ID: mdl-38142881

Aggregation kinetics of plastics are affected by the surface functional groups and exposure orders (electrolyte and protein) with kinds of mechanisms in aquatic environment. This study investigates the aggregation of polystyrene nanoplastics (PSNPs) with varying surface functional groups in the presence of common electrolytes (NaCl, CaCl2, Na2SO4) and bovine serum albumin (BSA). It also examines the impact of different exposure orders, namely BSA + NaCl (adding them together), BSA → NaCl (adding BSA firstly and then NaCl), and NaCl → BSA (adding NaCl firstly and then BSA), on PSNPs aggregation. The presence of BSA decreased the critical coagulation concentration in NaCl (CCCNa+) of the non-modified PS-Bare from 222.17 to 142.81 mM (35.72%), but increased that of the carboxyl-modified PS-COOH from 157.34 to 160.03 mM (1.71%). This might be ascribed to the thicker absorbed layer of BSA onto the PS-Bare surface, known from Ohshima's soft particle theory. Their aggregation in CaCl2 was both increased because of Ca2+ bridging. Different from the monotonous effects of BSA on PS-Bare and PS-COOH, BSA initially facilitated PS-NH2 aggregation via patch-charge attraction, then inhibited it at higher salt levels through steric repulsion. Furthermore, exposure orders had no significant effect on PS-Bare and PS-COOH, but had a NaCl concentration-dependent impact on PS-NH2. At the low NaCl concentrations (10 and 100 mM), no obvious influence could be observed. While, at 300 mM NaCl, the high concentrations of BSA could not totally stabilize the salt-induced aggregates in NaCl → BSA, but could achieve it in the other two orders. These might be attributed to the electrical double layer compression by NaCl, "patch-charge" force and steric hindrance by BSA. These experimental findings shed light on the potential fate and transport of nanoparticles in aquatic environments.


Nanoparticles , Polystyrenes , Microplastics , Sodium Chloride , Calcium Chloride , Electrolytes , Serum Albumin, Bovine
5.
Ecotoxicol Environ Saf ; 264: 115435, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37722303

Introducing co-catalysts to enhance the activation of cuprous-mediated peroxymonosulfate (PMS) and induce the continuous generation of highly reactive oxygen species is promising. The function, effectiveness, and acceleration mechanism of co-catalysts in the cuprous-mediated PMS activation process were fully explored in this work, which focused on rhodamine B as the target contaminants. The results demonstrated that molybdenum (Mo) powder was a superb co-catalyst, and that the reaction of cuprous-mediated PMS system was carried out by surface Mo species as opposed to Mo ions in the solution. The Cu (II)/Cu(I) cycle was primarily encouraged by the Mo0, which also caused abundant ·HO and 1O2 and minimal SO4·- and ·O2- to be produced from PMS. The Mo/Cu2+/PMS system exhibited high removal efficiency towards typical pollutants, especially ciprofloxacin, methyl orange, malachite green, and crystal violet, with removal rates up to 93%, 99%, 97%, and 92%, respectively. Additionally, this system showed excellent adaptability to complex water environments. After four cycles, the Mo powder retained its properties and morphology, and the target pollutants could still maintain an 82% degradation efficiency. This study provides a basis for enhancing cuprous-mediated PMS activation for wastewater treatment.


Environmental Pollutants , Peroxides , Powders , Peroxides/chemistry , Reactive Oxygen Species/chemistry , Molybdenum , Environmental Pollutants/chemistry
6.
Biomed Pharmacother ; 166: 115282, 2023 Oct.
Article En | MEDLINE | ID: mdl-37567070

Systemic sclerosis (SSc) is an autoimmune disease characterized by immune dysfunction, vascular system dysfunction, and tissue fibrosis. Vascular injury, vascular remodeling, and endothelial dysfunction are the hallmark pathological changes of the disease. In the early stages of SSc development, endothelial cell injury and apoptosis can lead to vascular and perivascular inflammation, oxidative stress, and tissue hypoxia, which can cause clinical manifestations in various organs from the skin to the parenchymal organs. Early diagnosis and rational treatment can improve patient survival and quality of life. Ancillary examinations such as nailfold capillaroscopy as well as optical coherence tomography can help early detect vascular injury in SSc patients. Studies targeting the mechanisms of vascular lesions will provide new perspectives for treatment of SSc.


Scleroderma, Systemic , Vascular Diseases , Vascular System Injuries , Humans , Quality of Life , Fibrosis
7.
Inflammopharmacology ; 31(5): 2269-2282, 2023 Oct.
Article En | MEDLINE | ID: mdl-37429997

Pyroptosis, a form of programmed cell death with a high pro-inflammatory effect, causes cell lysis and leads to the secretion of countless interleukin-1ß (IL-1ß) and IL-18 cytokines, resulting in a subsequent extreme inflammatory response through the caspase-1-dependent pathway or caspase-1-independent pathway. Adult-onset Still's disease (AOSD) is a systemic inflammatory disease with extensive disease manifestations and severe complications such as macrophage activation syndrome, which is characterized by high-grade inflammation and cytokine storms regulated by IL-1ß and IL-18. To date, the pathogenesis of AOSD is unclear, and the available therapy is unsatisfactory. As such, AOSD is still a challenging disease. In addition, the high inflammatory states and the increased expression of multiple pyroptosis markers in AOSD indicate that pyroptosis plays an important role in the pathogenesis of AOSD. Accordingly, this review summarizes the molecular mechanisms of pyroptosis and describes the potential role of pyroptosis in AOSD, the therapeutic practicalities of pyroptosis target drugs in AOSD, and the therapeutic blueprint of other pyroptosis target drugs.


Still's Disease, Adult-Onset , Adult , Humans , Still's Disease, Adult-Onset/drug therapy , Still's Disease, Adult-Onset/etiology , Still's Disease, Adult-Onset/pathology , Interleukin-18 , Pyroptosis , Cytokines , Biomarkers , Caspase 1
8.
Int Immunopharmacol ; 121: 110420, 2023 Aug.
Article En | MEDLINE | ID: mdl-37331293

Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to irreversible fibrosis of the skin and the internal organs. The etiology of SSc is complex, its pathophysiology is poorly understood, and clinical therapeutic options are restricted. Thus, research into medications and targets for treating fibrosis is essential and urgent. Fos-related antigen 2 (Fra2) is a transcription factor that is a member of the activator protein-1 family. Fra2 transgenic mice were shown to have spontaneous fibrosis. All-trans retinoic acid (ATRA) is a vitamin A intermediate metabolite and ligand for the retinoic acid receptor (RAR), which possesses anti-inflammatory and anti-proliferative properties. Recent research has demonstrated that ATRA also has an anti-fibrotic effect. However, the exact mechanism is not fully understood. Interestingly, we identified potential binding sites for the transcription factor RARα to the promoter region of the FRA2 gene through JASPAR and PROMO databases. In this study, the pro-fibrotic effect of Fra2 in SSc is confirmed. SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc animals exhibit increased levels of Fra2. Inhibition of Fra2 expression in SSc dermal fibroblasts with Fra2 siRNA markedly decreased collagen I expression. ATRA reduced the expressions of Fra2, collagen I, and α-smooth muscle actin(α-SMA) in SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc mice. In addition, chromatin immunoprecipitation and dual-luciferase assays demonstrated that retinoic acid receptor RARα binds to the FRA2 promoter and modulates its transcriptional activity. ATRA decreases collagen I expression both in vivo and in vitro via the reduction of Fra2 expression. This work establishes the rationale for expanding the use of ATRA in the treatment of SSc and indicates that Fra2 can be used as an anti-fibrotic target.


Scleroderma, Systemic , Transcription Factor AP-1 , Mice , Animals , Transcription Factor AP-1/metabolism , Fibrosis , Scleroderma, Systemic/metabolism , Mice, Transgenic , Collagen Type I/metabolism , Tretinoin/pharmacology , Receptors, Retinoic Acid/metabolism , Bleomycin/metabolism , Fibroblasts , Skin/pathology , Disease Models, Animal
9.
Curr Med Chem ; 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36757030

The fibrosis of tissues and organs occurs via an aberrant tissue remodeling process characterized by an excessive deposition of extracellular matrix, which can lead to organ dysfunction, organ failure, and death. Because the pathogenesis of fibrosis remains unclear and elusive, there is currently no medication to reverse it; hence, this process deserves further study. Activating protein-1 (AP-1)-comprising Jun (c-Jun, JunB, JunD), Fos (c-fos, FosB, Fra1, and Fra2), and activating transcription factor-is a versatile dimeric transcription factor. Numerous studies have demonstrated that AP-1 plays a crucial role in advancing tissue and organ fibrosis via induction of the expression of fibrotic molecules and activating fibroblasts. This review focuses on the role of AP-1 in a range of fibrotic disorders as well as on the antifibrotic effects of AP-1 inhibitors. It also discusses the potential of AP-1 as a new therapeutic target in conditions involving tissue and organ fibrosis.

10.
Sci Total Environ ; 866: 161375, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36621494

Antibiotics and microplastics (MPs) inevitably coexist in natural waters, but their combined effect on aquatic organisms is still ambiguous. This study investigated the individual and combined toxicity of chloramphenicol (CAP) and micro-polystyrene (mPS) particles to Microcystis aeruginosa by physiological biomarkers, related gene expression, and molecular dynamics simulation. The results indicated that both individual and joint treatments threatened algal growth, while combined toxicity was higher than the former. Photosynthetic pigments and gene expression were inhibited by single CAP and mPS exposure, but CAP dominated and aggravated photosynthetic toxicity in combined exposure. Additionally, mPS damaged cell membranes and induced oxidative stress, which might further facilitate the entry of CAP into cells during co-exposure. The synergistic effect of CAP and mPS might be explained by the common photosynthetic toxicity target of CAP and mPS as well as oxidative stress. Furthermore, the molecular dynamics simulation revealed that CAP altered conformations of photosynthetic assembly protein YCF48 and SOD enzyme, and competed for functional sites of SOD, thus disturbing photosynthesis and antioxidant systems. These findings provide useful insights into the combined toxicity mechanism of antibiotics and MPs as well as highlight the importance of co-pollutant toxicity in the aquatic environment.


Chloramphenicol , Microcystis , Polystyrenes , Water Pollutants, Chemical , Anti-Bacterial Agents/toxicity , Chloramphenicol/toxicity , Microcystis/drug effects , Microcystis/metabolism , Microplastics/toxicity , Molecular Dynamics Simulation , Plastics , Polystyrenes/toxicity , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity
11.
Int Immunopharmacol ; 116: 109764, 2023 Mar.
Article En | MEDLINE | ID: mdl-36706594

Scleroderma is an autoimmune disease mainly characterized by progressive fibrosis of the skin. There are two types of scleroderma, namely localized scleroderma (LS) and systemic sclerosis (SSc); skin lesions in both types of scleroderma are histologically identical. Progressive skin sclerosis induces psychological and ecological burden for scleroderma patients. However, there is no effective treatment for scleroderma due to its unclear etiology. Aryl hydrocarbon receptor (AhR) is recognized as an environmental chemical effector that can respond to ultraviolet radiation, which has been demonstrated to participate in the pathogenesis of SSc in our previous study. In this study, we verify whether the anti-fibrosis effect of ultraviolet A1 (UVA1) phototherapy could be partially induced through Ficz/AhR/MAPK signaling activation for fibrotic lesions in both SSc and LS patients. This is the first study to show the association between the AhR pathway and the anti-fibrotic mechanism of UVA1 phototherapy, which provides additional evidence of the role of AhR in the fibrotic mechanism of systemic scleroderma from different perspectives. Ficz and other AhR agonists may replace UVA1 phototherapy as anti-fibrotic agents in scleroderma.


Scleroderma, Localized , Scleroderma, Systemic , Humans , Scleroderma, Localized/radiotherapy , Scleroderma, Localized/metabolism , Ultraviolet Rays , Receptors, Aryl Hydrocarbon , Scleroderma, Systemic/radiotherapy , Scleroderma, Systemic/pathology , Collagen/metabolism
12.
Int Immunopharmacol ; 114: 109574, 2023 Jan.
Article En | MEDLINE | ID: mdl-36538850

BACKGROUND: Perforin (PRF), a pivotal cytotoxic effector molecule of activated CD8+ T cells, has a crucial role in the pathogenesis of vitiligo. However, the mechanisms leading to the abnormal perforin expression remain poorly understood in the CD8+ T cells of vitiligo patients. OBJECTIVE: To investigate the contributions of DNA methylation to the abnormal expression of perforin in CD8+ T cells of vitiligo patients. METHODS: Skin samples and CD8+ T cells from peripheral blood were collected to detect the expression levels of perforin in vitiligo patients. The methylation status of the perforin promoter was investigated by bisulfite sequencing. The apoptosis of melanocytes co-cultured with CD8+ T cells was evaluated to determinate the cytotoxic role of perforin. RESULTS: Increased CD8+ and perforin+ cells were found in lesion of vitiligo patients. The expression levels of perforin were elevated in the CD8+ T cells from peripheral blood of vitiligo patients and their culture supernatants. The perforin promoter was hypomethylated in vitiligo CD8+ T cells. Treatment of normal CD8+ T cells with the DNA methylation inhibitor 5-Azacytidine (5-Azac) reduced the perforin methylation level and caused perforin overexpression. The methylation levels of perforin were inversely correlated with its mRNA expression in CD8+ T cells. The apoptosis rates of the melanocytes co-cultured with vitiligo- and 5-Azac-treated-normal CD8+ T cells were significantly increased compared with normal-untreated CD8+ T cells. And the apoptosis rates of melanocytes co-cultured with si-PRF-treated-vitiligo CD8+ T cells were significantly decreased compared with vitiligo-untreated CD8+ T cells. CONCLUSION: Hypomethylation of the perforin promoter contributes to its overexpression in CD8+ T cells from vitiligo patients, which then mediates the melanocyte destruction in vitiligo.


Vitiligo , Humans , Perforin/genetics , Perforin/metabolism , Vitiligo/genetics , CD8-Positive T-Lymphocytes/metabolism , Epigenesis, Genetic , Melanocytes/metabolism , Melanocytes/pathology
13.
Sci Total Environ ; 864: 161062, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36565867

Biochar has been frequently used as a persulfate (PS) activator due to its attractive properties, but dissolved organic matter (DOM) derived from the non­carbonized part of biochar has received less attention, not to mention its specific role and impact in biochar/PS systems. In this study, wheat straw, municipal sludge, and swine bone were selected as the representative feed stocks of biochar. Subsequently, these three types of biochar were adopted to explore the roles of DOM in biochar/PS systems. Although the composition and amount of DOM derived from different biochar were discrepant, they exhibited similar effect in biochar/PS systems. To be specific, the pore-clogging effect of DOM on biochar suppressed the adsorption capacity and catalytic performance of the three biochar. Furthermore, the removal of DOM decreased the environmental risk of these biochar/PS systems and enhanced the stability of the involved biochar. With respect to the variation in degradation mechanism, the removal of DOM increased the proportion of electron transfer pathway in unison, but the diminution in the roles of O2•¯ and 1O2 was more remarkable in bone-derived-biochar/PS systems. Additionally, the toxicity test illustrated that the leakage and accumulation of DOM were toxic to Chlorella sp., and the DOM from sludge-derived-biochar presented the highest toxicity. Overall, this study analyzes the roles of DOM derived from different biochar in biochar/PS systems and evaluates their environmental risk, which contributes to a comprehensive understanding of the fate of DOM derived from biochar.


Chlorella , Dissolved Organic Matter , Sewage , Charcoal
14.
Front Immunol ; 13: 929289, 2022.
Article En | MEDLINE | ID: mdl-36389675

Objectives: Systemic sclerosis (SSc) is an autoimmune disease caused by various pathogenic factors, including hypoxia. Hypoxia stimulates the production of the extracellular matrix to promote fibrosis. However, the integrated function and the underlying mechanism of hypoxia in SSc are unclear. Methods: In the present study, we used Agilent SurePrint G3 Human Gene Expression v3 for the transcriptional sequencing of fibroblasts with and without hypoxia to detect differentially expressed genes (DEGs) in hypoxia. We analyzed the results with the transcriptome data of SSc lesions (GSE95065) to select the co-DEGs. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on the basis of the co-DEGs using the R package ClusterProfiler, which showed that hypoxia and cross talk of hypoxia with other pathogenic factors are involved in the pathogenesis of SSc. Furthermore, we constructed a protein-protein interaction (PPI) network of co-DEGs and screened two significant functional expression modules. Results: We identified nine hub genes (ALDH1A1, EGF, NOX4, LYN, DNTT, PTGS2, TKT, ACAA2, and ALDH3A1). These genes affect the pentose phosphate pathway, oxidative stress, and lipolysis. Conclusion: Our study provides insights into the mechanisms underlying the effects of hypoxia on SSc pathogenesis, which will help to better understand SSc pathogenesis and develop new therapeutic strategies for SSc.


Scleroderma, Systemic , Transcriptome , Humans , Computational Biology/methods , Gene Expression Profiling , Scleroderma, Systemic/pathology , Hypoxia/genetics
15.
Dermatol Ther ; 35(12): e15942, 2022 12.
Article En | MEDLINE | ID: mdl-36254686

We here report a case of a middle-aged man with an unusual case of bullous lichen sclerosus complicated with generalized morphea. He showed initial recurrent flaccid bullae, followed by ivory-white sclerotic plaques and extensive skin sclerosis, with additional walking disorder caused by knee-joint contracture, and ulcers on the lower extremities and back. The patient had no visceral involvement. After oral hydroxychloroquine and oral corticosteroids failed, the patient was given tofacitinib, which resolved his ulcers after 4 weeks and ameliorated his knee-joint contracture and skin sclerosis within 4 months. Owing to the occurrence of diffuse large B-cell lymphoma, he stopped using tofacitinib, and the ulcer and walking disorder reappeared. This is rare case of bullous lichen sclerosus-generalized morphea overlap syndrome. The patient recovered well after treatment with tofacitinib. His symptoms recurred after discontinuation of tofacitinib.


Contracture , Lichen Sclerosus et Atrophicus , Scleroderma, Localized , Scleroderma, Systemic , Skin Diseases , Middle Aged , Male , Humans , Scleroderma, Localized/complications , Scleroderma, Localized/diagnosis , Scleroderma, Localized/drug therapy , Sclerosis/complications , Ulcer , Neoplasm Recurrence, Local
16.
Front Immunol ; 13: 841732, 2022.
Article En | MEDLINE | ID: mdl-35693810

Autoimmune diseases are a group of heterogeneous diseases with diverse clinical manifestations that can be divided into systemic and organ-specific. The common etiology of autoimmune diseases is the destruction of immune tolerance and the production of autoantibodies, which attack specific tissues and/or organs in the body. The pathogenesis of autoimmune diseases is complicated, and genetic, environmental, infectious, and even psychological factors work together to cause aberrant innate and adaptive immune responses. Although the exact mechanisms are unclear, recently, excessive exacerbation of pyroptosis, as a bond between innate and adaptive immunity, has been proven to play a crucial role in the development of autoimmune disease. Pyroptosis is characterized by pore formation on cell membranes, as well as cell rupture and the excretion of intracellular contents and pro-inflammatory cytokines, such as IL-1ß and IL-18. This overactive inflammatory programmed cell death disrupts immune system homeostasis and promotes autoimmunity. This review examines the molecular structure of classical inflammasomes, including NLRP3, AIM2, and P2X7-NLRP3, as the switches of pyroptosis, and their molecular regulation mechanisms. The sophisticated pyroptosis pathways, including the canonical caspase-1-mediated pathway, the noncanonical caspase-4/5/11-mediated pathway, the emerging caspase-3-mediated pathway, and the caspase-independent pathway, are also described. We highlight the recent advances in pyroptosis in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Sjögren's syndrome and dermatomyositis, and attempt to identify its potential advantages as a therapeutic target or prognostic marker in these diseases.


Autoimmune Diseases , Pyroptosis , Autoimmune Diseases/therapy , Caspases/metabolism , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
17.
J Environ Manage ; 317: 115437, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35661878

Biochar can achieve multiple benefits including solid waste management, polluted water remediation, carbon sequestration, and emission reduction. However, various environmental factors (such as temperature variations and dry-wet alternation) and microbial activity may lead to the fragmentation, dissolution, and oxidation of biochar. These accelerate the dissolution of biochar-derived dissolved organic matter (DOM) and then influence disinfection byproducts formation potential (DBPFP) throughout the water treatment process. In this paper, biochars from six biomass feedstocks with five aging processes were prepared, and the DBPFP of biochar and its derived DOM were first studied systematically. Different aging processes might increase the DBPFP of biochar by increasing DOM content and changing the fraction distribution of DOM derived from biochar. Especially, the DBPFP of biochar increased apparently with the chemical aging process. Coexisting with the environmental concentration of humic acid, even aged biochar showed the potential to reduce DBPFP and integrated toxic risk value of the mixed system. In this study, the DBPFP of biochar-derived DOM during the disinfection process is confirmed, and the results can give information to the selection of biomass feedstocks of biochar and its service life in the water treatment process.


Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Disinfection/methods , Dissolved Organic Matter , Halogenation , Water Pollutants, Chemical/chemistry
18.
Sci Total Environ ; 844: 156835, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-35750170

Polluted stormwater (PSW) treatment is becoming increasingly important because of the existence of multiple pollutants from non-point pollution sources. Alfalfa biochar loaded with Mg/Fe layered double hydroxide (AF-LDH) was successfully synthesized to remove trace metal(loid)s from stormwater. The adsorption kinetics and isotherms of metal(loid)s in a mono-component system and the reusability of the composite materials was investigated in this study. The result showed that the maximum removal efficiency for Pb(II), Cu(II), Zn(II), Cd(II), As(V), and Cr(VI) were 98.98 %, 98.11 %, 97.88 %, 97.71 %, 98.81 %, and 50.89 %, respectively, when added calcined AF-LDH (AF-LDO) composite material to the multi-component solution. The AF-LDH and AF-LDO could efficiently remove trace pollutants (10-100 µg/L) from multi-component solution, especially for AF-LDO, which could completely remove the tested six trace metal(loid)s. Furthermore, Fourier transform infrared spectra and X-ray diffraction characterizations supported the Mg/Fe layered double hydroxide reconstruction. The main mechanisms of Pb(II), Cu(II), Zn(II), and Cd(II) (cationic metals) removal were ion exchange and surface precipitation, whereas As(V) and Cr(VI) (anionic metals) were mainly dislodged through the formation of surface complexation, electrostatic attraction, and interlayer anion exchange, concerning the -OH and -COOH of AF-LDH. Importantly, the results of the column experiment demonstrated that AF-LDO was superior to AF-LDH for anionic metal removal from stormwater. In this study, we synthesized AF-LDH and AF-LDO for trace metal(loid) removal and proposed a new and practical approach for stormwater purification.


Trace Elements , Water Pollutants, Chemical , Adsorption , Cadmium , Charcoal , Hydroxides , Kinetics , Lead , Medicago sativa , Water Pollutants, Chemical/analysis
19.
Environ Sci Pollut Res Int ; 29(40): 60953-60967, 2022 Aug.
Article En | MEDLINE | ID: mdl-35435545

Gold (Au) nanoparticles supported on certain platforms display highly efficient activity on nitroaromatics reduction. In this study, steam-activated carbon black (SCB) was used as a platform to fabricate Au/SCB composites via a green and simple method for 4-nitrophenol (4-NP) reduction. The obtained Au/SCB composites exhibit efficient catalytic performance in reduction of 4-NP (rate constant kapp = 2.1925 min-1). The effects of SCB activated under different steam temperature, Au loading amount, pH, and reaction temperature and NaBH4 concentration were studied. The structural advantages of SCB as a platform were analyzed by various characterizations. Especially, the result of N2 adsorption-desorption method showed that steam activating process could bring higher surface area (from 185.9689 to 249.0053 m2/g), larger pore volume (from 0.073268 to 0.165246 cm3/g), and more micropore for SCB when compared with initial CB, demonstrating the suitable of SCB for Au NP anchoring, thus promoting the catalytic activity. This work contributes to the fabrication of other supported metal nanoparticle catalysts for preparing different functional nanocomposites for different applications.


Gold , Metal Nanoparticles , Catalysis , Charcoal , Gold/chemistry , Metal Nanoparticles/chemistry , Nitrophenols/chemistry , Soot , Steam
20.
Arthritis Res Ther ; 24(1): 50, 2022 02 19.
Article En | MEDLINE | ID: mdl-35183246

BACKGROUND: Systemic sclerosis (SSc), an autoimmune disease with unknown etiology and pathogenesis, is characterized by abnormal autoimmunity, vascular dysfunction, and progressive fibrosis of skin and organs. Studies have shown that a key factor in the pathogenesis of SSc is aberrant activation of CD4+ T cells. Our previous studies have shown that a global hypomethylation state of CD4+ T cells is closely related to aberrant activation. However, the exact mechanism of hypomethylation in CD4+T cells is not yet clear. METHODS: Illumina HiSeq 2500 Platform was used to screen differentially expressed genes and explore the role of OASL, TET1, and IRF1 in the abnormal activation of CD4+T cells in SSc. Finally, double luciferase reporter gene experiments were used to analyze the interaction between IRF1 and TET1. RESULTS: OASL overexpression could upregulate TET1 to increase the hydroxymethylation levels of CD4+ T cells and induce high expression of functional proteins (CD40L and CD70), thus promoting CD4+T cell aberrant activation. Moreover, OASL upregulated TET1 via IRF1 signaling activation, and a double luciferase reporter gene experiment revealed that IRF1 can bind to the TET1 promoter region to regulate its expression. CONCLUSIONS: OASL participates in the regulation of abnormal hypomethylation of CD4+ T cells in SSc, which implies a pivotal role for IFN signaling in the pathogenesis of SSc. Regulating DNA methylation and IFN signaling may serve as therapeutic treatments in SSc.


DNA Methylation , Scleroderma, Systemic , CD4-Positive T-Lymphocytes , Humans , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Lymphocyte Activation , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Scleroderma, Systemic/metabolism
...